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5. Introduction

Modern control and estimation theory have been used success-
fully to develcp a model for human performance in continuous con-
trol tasks [l1]. This model, frequently referred to as the
optimal control model of the human operator, has been validated
extensively by experimental data and has been applied to a variety
of problems. The model incorporates an "internal model" that is
an exact replica of the system model as part of a Kalman filter
sub-model that represents human information processing. The
concept that the human operator builds an internal model of
his "universe" (e.g., through training) is not uncommon in
psychology. Moreover, the assumption of a perfect internal
model appears to be a satisfactory one in many instances, as
has been demunstrated by the agrsement between model predictions

and experimental data.

There are situations, however, in which the assumption of
a perfect model does not appear suitable and important app-
lications which would benefit from allowing for an internal

model that is different from the system model. For example,

naive or untrained trackers may not have "perfect" models even

for simpler systems. Tracking of targets executing deterministic

but unknown motions requires admitting imperfect internal
models (for the input) for complete generality. When a system
failure occurs there is a change in the system; until this
change is detected and the failed system identified the

operator's model is different than the system model.




In this note, some of the issues and equations involved in
predicting closed-loop man-machine performance for situations in
which the human operators' knowledge of the system and/or
environment are imperfect are presented and discussed. Several
examples to demonstrate some of the effects to be expected when
such is the case are then given. Details concerning equation

development may be found in [2].




2. Equations for Deviate Internal Model

Let the system to be controlled by the human operator

be described by the linear equations

x(E)

]

A x(t) + B u(t) + E w(t) (1)

]

y (t) € x(t) + D uft) (2)
where x is an ny dimensional vector of system state variables,

u is an ny-dimensional vector of control inputs, Y is an ny-
dimensional vector of displayed outputs and w is an ny,-dimensional
vector of a zero-mean, gaussian, white nose process with auto-
covariance E{w(ty)w'(tp)} = W S(t1-t,). We assume w(t) is
stationary so that W is constant for all t. We will also assume
that the matrices in (1) and (2) are constant. Thus, we treat j
a time-invariant system. Moreover, we will be concerned here

only with the steady-state solution.

The optimal control model for the human operator has the
structure illustrated in Figure 1. The structure and equations
of Figure 1 have been documented in [l1]. The blocks in Figure
1 labeled estimator and predictor model human information
processing. For these processes to be performed "optimally" ;
it is necessary to have perfect knowledge of the system {A, B, C,
D, E}, the driving noise-statistics {W}, and the parameters
describing human limitations f{rT, Th. Vy. Vm}. The control gains,
L*, model human control-command generation or compensation and
are selected so as to minimize a quadratic cost functional.

To achieve a minimum, i.e., to compute L*, it is necessary to

know A,B and the weighting coefficients (q(+)j). Thus, there

are three classes of quantities or parameters (system/enviroment,
own limitations, and cost weightings) that are required to be

known by the human operator if he is to perform optimally.

.‘. — ‘ ,
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There are many assumptions that can be made concerning the
human operator's knowledge of the requisite information. At
one extreme, one can assume that all quantities are unknown
(including the dimensions of the various matrices). At the
other end of the spectrum, one can assume that all gquantities
are known and the human performs optimally. This latter assump-
tion is, of course, the one used in formulating the optimal
control model; for trained operators, it seems closer to the
truth (or, at least it explains the data better) that the
assumption of complete ignorance. Here, for reasons discussed
in [2], we assume the human operator knows the cost functional

weightings and his own limitations of delay, neuromotor-lag

and observation noise. On the other hand, we allow the system
matrices to be unknown (even as to dimension) and the motor-

noise also to be unknown.

To implement the above assumptions, we assume the human
operator's internal model to be

2(t) = A z(6) + B u () +E v (0) (€

x(t) = & z(e) (4)

Blw) (t)) uj(t)} = W) 8(t)-t)) (s)
where

T 0
E, = W, = (6)
._.1 - __1 ~

o I, o ¥

where the matrices with "tildes" indicate internal matrices and
Equations (1) and (2) have been "augmented" to incorporate the
"neuromotor" dynamics (see Fig. 1 and [l1]). The perceived
variables remain unchanged inasmuch as the "true" y is displayed
to the operator. The "internal state" z does not have to be of

the same dimension as x. However, we assume that y and u in the

D




internal model have the same dimensions as the corresponding

vectors of the system.

It is now assumed that the human will perform "optimally"
for his internal system. These assumptions lead to a set of
coupled delay-differential equations. In the special case, where

X, = 2 and C)=Cj, the following equations describing closed-loop

performance are obtained [2]

e(e) = {51 - K C)) e(e) + (4 - 51) x(t-1)

) +~§1 u(t-1) - K ¥, (e=0)

X(e) = (A - B D) x(0) + AT %))
(_C_l e(t) + y_y(t~r)l

x(t) ~A x(t) - B L x(t) +E; w(t)

~

where e(t) is the state estimation error and K is the Kalman
gain for the system described by Equations (3)-(6). Equation
(7) is also a "coupled" set of delay-differential equations.
Note, however, that if Al = Ay the equation for the error
"decouples" from the state equation and the estimation equation.
Moreover, the system reduces to a set of ordinary differential
equations. Performance computations are thereby simplified
enormously requiring evalgation of ny x nx matrices only.

This is the case even if Wj # Wj. Unfortunately, the assumptions
required to achieve this simplification are too stringent for
most considerations.

The delay-differential character of the above equations can
be circumvented by approximating the human's delay via a Padeé
approximation. The delay is then considered part of the system

dynamics (except for computation of human describing functions);

..‘I.I.I.IlI..-.ﬁ‘....;.'..'..-.....-.--.“..-“‘-_““-‘““_uﬂh“




it is a part that is assumed known to the human opzrator so

there will be some compensation for the delay. The resulting

closed-loop equations are linear and time invariant. However,

their stability is not automatically guaranteed as in the case
when all matrices are known to the operator; instead, stability

depends on the particular internal model selected. The necessary

modifications are given in [2].




3. Examples

Incorrect Knowledge of Vehicle Dynamics

In order to control a vehicle, the pilot must learn its
basic response characteristics. One can readily envision this
as a two-stage process: 1) the development of an appropriate
structural model for the plant; and 2) the adjustment (or fine
tuning) of the parameters in that structure. Such a process
is consistent with the notions of system identification
theory. With regard to structure, the problem in a multi-input,
multi-output plant involves learning the couplings as well as
the basic modes of response. For single-input, single-output
situations a fundamental issue is the order of the plant
dynamics, i.e., how many integrations are there between control

input and plant output.

Figures 2 and 3 show the predicted describing function and
remnant for an operator optimizing his performance based on
different inter:ial models of the vehicle dynamics. In each
case, the input disturbance was filtered white noise with a
2 rad/sec bandwidth. 1In Figure 2, the true plant dynamics are
K/s, i.e., the rate-of-change of plant output is proportional
to the control input. Three curves are shown: one in which
the operator has the correct model, one in which the internal
wndel is incorrect (the output is proportional to the input),
and one in which the operator has a large pseudomotor noise
[2]1. The curve corresponding to having the correct model agrees
quite well with the measured describing functions for this case
[1]. Note that the effect of having the wrong internal model is
substantial whereas the effect of high pseudo motor-noise is

slight (a reduction in gain at low frequencies.
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Figure 3 presents similar results for a more complex plant
which represents the roll-synamics of an aircraft. Results are
shown for the case in which the operator has the correct internal
model and for the cases where the model is a good approximation
to either the low frequency or high frequency plant response.
Frequency characteristics of the three vehicle models are plotted

in Figure 4. Again the results show that we can expect measure-

ments of the pilot's describing functions to be significantly
different if operating with different internal models. In this

.
L case, the remnant is somewhat less revealing.

Model results were also obtained for the case where the
pilot's internal model of the aircraft roll dynamics differed
only slightly from the actual dynamics over the entire frequency
range of interest. 1In this case (not shown), differences in
the above measurements were not distinguishable from those that

might be due to othe parameter changes.

On the basis of these preliminary results, we believe
that major structural errors in the operator's internal model
of the plant dynamics can be inferred by comparing the measured

describing function and remnant with that predicted, by the OCM,

for a trained operator. Moreover, the form of the operator's
internal model may also be deduced using the OCM. Major
parameter errors are also probably discernible. However, the
fine-tuning process of model identification may not be distin-
guished readily from other factors such as general noise-

reduction.

11
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Learning the Input Characteristics

The K/s example described above was also examined to
see if the effects of incorrect knowledge of the input charac-
teristics would be evident. Figure 5 gives results for the
case in which the operator overestimates the input bandwidth
by a factor of 2. It can be seen that these results differ
significantly from the situation in which the input bandwidth
is known correctly only in terms of low frequency gain. If we
refer to Figre 2, we see that the effect is also different from

that of having an incorrect model of the vehicle dynamics.

Perceptual Efficiency

A major application of the wrong internal model concept would be
to the study of learning of control strategies. In addition
to learning the plant dynamics, it is believed that skill
development involves learning to use the available cues most
efficiently. We can envision this as a process of proper cue
selection as well as noise reduction. For example, the
progression-regression hypothesis [3] suggests an increasing
utilization of derivative information with learning. It is
therefore of interest to compare the effects of inefficient
cue utilization and an incorrect internal model. Figure 6
compares predicted describing functions and remnant for
optimized performance with and without rate information. The
results are for the roll dynamics described earlier and it 1is
assumed that the operator has learned the plant dynamics. It
can be seen that failure to utilize rate information has a
distinct impact on the measures of control strategy and
perceptual efficiency. Most of this impact is at high fre-
quencies, as expected. Furthermore, comparison with Figure 3
reveals that lack of rate information produces a decidedly
different result from that obtained with a low frequency

approximation to the vehicle dynamics. Thus, it should be

13
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possible to differentiate between learning vehicle dynamics and
learning to use the available cues from these measures of operator

performance.
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4. Conclusion

In conclusion, we wish to point out that, while the notion
of a deviate internal model is appealing intuitively, in the

authors' opinion, its use for trained operators even in complex

tasks should be considered with caution for the following reasons:

(1) the assumption of a perfect model works quite well for
trained operators performing well defined tasks; (2) the obser-
vation and motor noises included in the optimal control model
already account for some model imperfections; (3) when there

is significant process noise, state prediction and estimation is
difficult and the contribution to performance degradation of
deviate internal models is likely to be reduced significantly;
(4) computational requirements for predicting closed loop
performance may well increase under this assumption; and (5)
most importantly, in order to avoid having to choose among an
infinity of possible internal models, rules for picking a
specific internal model are needed, and, presently, no such
rules exist. On the other hand, the programs developed here
and the insights provided by the sensitivity analyses should
prove very useful in studying and analyzing the performance

of untrained operators.
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